词向量——openAI GPT 1.0与2.0
一、1.0
openAI GPT(Generative Pre-trained Transformer)词向量模型,2018年在《Improving Language Understanding by Generative Pre-Training》这篇论文中被提出,下面从几个方面来介绍。
1.产生场景
将训练好的词向量应用到特定任务中有两个主要挑战:
(1)it is unclear what type of optimization objectives are most effective at learning text representations that are useful for transfer
(2)there is no consensus on the most effective way to transfer these learned representations to the target task
而openAI GPT模型使用了一种半监督方式,它结合了无监督的预训练(pre-training)和有监督的微调(fine-tuning),旨在学习一种通用的表示方式,它转移到各种类型的NLP任务中都可以做很少的改变。
2.特征
是一种fine-tuning方法,在fine-tuning期间利用task-aware input Transformations来实现有效传输,同时对模型架构进行最少的更改。
use a left-to-right architecture, where every token can only attended to previous tokens in the self-attention layers of the Transformer,BERT认为它没有真正做到双向,会影响下游任务的表现,尤其是token-level tasks such as SQuAD question answering。而在BERT中,MLM 训练目标 allows the representation to fuse the left and the right context.
3.训练
语料库:BooksCorpus (800M words)
employ a two-stage training procedure. First, we use a language modeling objective on the unlabeled data to learn the initial parameters of a neural network model. Subsequently, we adapt these parameters to a target task using the corresponding supervised objective.
(1)Unsupervised pre-training
可以从这里看出openAI GPT只考虑了从左到右的上下文
OpenAI GPT use a multi-layer Transformer decoder for the language model.This model applies a multi-headed self-attention operation over the input context tokens followed by position-wise feedforward layers to produce an output distribution over target tokens
(2)Supervised fine-tuning
首先求目标函数
将语言模型作为微调(fine-tuning)的辅助目标有助于学习NLP任务,所以我们最后可以加权重组合起来,得到最新的目标函数
注意:
4.评估
对四种类型的NLP任务(12个task)进行了评估 ,其中有的dataset来自GLUE benchmark,achieves new state-of-the-art results in 9 out of the 12 datasets
(1)natural language inference(textual entailment)
dataset:MNLI、QNLI、RTE(来自GLUE benchmark)和SciTail、SNLI
(2)question answering and commonsense reasoning
dataset:Story Cloze Test和RACE dataset(consisting of English passages with associated questions from middle and high school exams)
(3)semantic similarity(predicting whether two sentences are semantically equivalent or not)
dataset:MRPC、QQP、STS-B(来自GLUE benchmark)
(4)text classification
dataset:CoLA、SST-2(来自GLUE benchmark)
二、2.0
GPT-2使用了约 1000 万篇文章的数据集,文本集合达 40GB。这样训练出来的语言模型优势很明显,比使用专有数据集来的通用性更强,更能理解语言和知识逻辑,可以用于任意领域的下游任务。
但要完成这项任务,必须使用超大规模的GPU机器学习集群,OpenAI为此不得不去争夺紧张而昂贵的GPU训练时间,光是庞大的开销就足以劝退很多想复现其工作的研究者了。